Metabolism of 2-hydroxy-1-naphthoic acid and naphthalene via gentisic acid by distinctly different sets of enzymes in Burkholderia sp. strain BC1.
نویسندگان
چکیده
Burkholderia sp. strain BC1, a soil bacterium, isolated from a naphthalene balls manufacturing waste disposal site, is capable of utilizing 2-hydroxy-1-naphthoic acid (2H1NA) and naphthalene individually as the sole source of carbon and energy. To deduce the pathway for degradation of 2H1NA, metabolites isolated from resting cell culture were identified by a combination of chromatographic and spectrometric analyses. Characterization of metabolic intermediates, oxygen uptake studies and enzyme activities revealed that strain BC1 degrades 2H1NA via 2-naphthol, 1,2,6-trihydroxy-1,2-dihydronaphthalene and gentisic acid. In addition, naphthalene was found to be degraded via 1,2-dihydroxy-1,2-dihydronaphthalene, salicylic acid and gentisic acid, with the putative involvement of the classical nag pathway. Unlike most other Gram-negative bacteria, metabolism of salicylic acid in strain BC1 involves a dual pathway, via gentisic acid and catechol, with the latter being metabolized by catechol 1,2-dioxygenase. Involvement of a non-oxidative decarboxylase in the enzymic transformation of 2H1NA to 2-naphthol indicates an alternative catabolic pathway for the bacterial degradation of hydroxynaphthoic acid. Furthermore, the biochemical observations on the metabolism of structurally similar compounds, naphthalene and 2-naphthol, by similar but different sets of enzymes in strain BC1 were validated by real-time PCR analyses.
منابع مشابه
A novel degradation pathway in the assimilation of phenanthrene by Staphylococcus sp. strain PN/Y via meta-cleavage of 2-hydroxy-1-naphthoic acid: formation of trans-2,3-dioxo-5-(29-hydroxyphenyl)- pent-4-enoic acid
Received 8 November 2006 Revised 17 January 2007 Accepted 17 January 2007 Staphylococcus sp. strain PN/Y, capable of utilizing phenanthrene as a sole source of carbon and energy, was isolated from petroleum-contaminated soil. In the degradation of phenanthrene by strain PN/Y, various metabolites, isolated and identified by a combination of chromatographic and spectrometric analyses, revealed a ...
متن کاملMetabolism of dibenzothiophene and naphthalene in Pseudomonas strains: complete DNA sequence of an upper naphthalene catabolic pathway.
From a soil isolate, Pseudomonas strain C18, we cloned and sequenced a 9.8-kb DNA fragment that encodes dibenzothiophene-degrading enzymes. Nine open reading frames were identified and designated doxABDEFGHIJ. Collectively, we refer to these genes as the DOX pathway. At the nucleotide level, doxABD are identical to the ndoABC genes that encode naphthalene dioxygenase of Pseudomonas putida. The ...
متن کاملMetabolism of naphthalene, fluorene, and phenanthrene: preliminary characterization of a cloned gene cluster from Pseudomonas putida NCIB 9816.
A modified cloning procedure was used to obtain large DNA insertions (20 to 30 kb) from Pseudomonas putida NCIB 9816 that expressed polycyclic aromatic hydrocarbon (PAH) transformation activity in Escherichia coli HB101. Four subclones (16 [in both orientations], 12, and 8.5 kb in size) were constructed from the initial clones. Naphthalene, fluorene, and phenanthrene transformations were invest...
متن کاملHeterologous expression and characterization of two 1-hydroxy-2-naphthoic acid dioxygenases from Arthrobacter phenanthrenivorans.
A protein fraction exhibiting 1-hydroxy-2-naphthoic acid (1-H2NA) dioxygenase activity was purified via ion exchange, hydrophobic interactions, and gel filtration chromatography from Arthrobacter phenanthrenivorans sp. nov. strain Sphe3 isolated from a Greek creosote-oil-polluted site. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and tandem MS (MS-...
متن کاملAnaerobic Naphthalene Degradation by a Sulfate-Reducing Enrichment Culture
Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture was studied by substrate utilization tests and identification of metabolites by gas chromatography-mass spectrometry. In substrate utilization tests, the culture was able to oxidize naphthalene, 2-methylnaphthalene, 1and 2-naphthoic acids, phenylacetic acid, benzoic acid, cyclohexanecarboxylic acid, and cyclohex-1-ene-ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Microbiology
دوره 160 Pt 5 شماره
صفحات -
تاریخ انتشار 2014